Exercise 6

In Exercises 5-8, show that the given function $u(x)$ is a solution of the corresponding Volterra integral equation:

$$
u(x)=4 x+\sin x+2 x^{2}-\cos x+1-\int_{0}^{x} u(t) d t, u(x)=4 x+\sin x
$$

Solution

Substitute the function in question on both sides of the integral equation.

$$
4 x+\sin x \stackrel{?}{=} 4 x+\sin x+2 x^{2}-\cos x+1-\int_{0}^{x}(4 t+\sin t) d t
$$

Subtract $4 x+\sin x$ from both sides and split the integral into two.

$$
\begin{aligned}
0 & \stackrel{?}{=} 2 x^{2}-\cos x+1-\left(\int_{0}^{x} 4 t d t+\int_{0}^{x} \sin t d t\right) \\
& \stackrel{?}{=} 2 x^{2}-\cos x+1-\left[\left.2 t^{2}\right|_{0} ^{x}+\left.(-\cos t)\right|_{0} ^{x}\right] \\
& \stackrel{?}{=} 2 x^{2}-\cos x+1-\left[2 x^{2}-0+(-\cos x)-(-\cos 0)\right] \\
& \stackrel{?}{=} 2 x^{2}-\cos x+1-2 x^{2}+\cos x-1 \\
& =0
\end{aligned}
$$

Therefore,

$$
u(x)=e^{2 x}
$$

is a solution of the Volterra integral equation.

